

Apress
Books for Professionals by Professionals

Chapter One: “An Introduction to PHP”

A Programmer’s Introduction to PHP 4.0

by William Jason Gilmore
ISBN # 1-893115-85-2

Copyright 2001 William J. Gilmore. World rights reserved. No part of this publication may be
stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written
permission of the publisher.

info@apress.com

CHAPTER 1

An Introduction to PHP

The past five years have been fantastic in terms of the explosive growth of the
Internet and the new ways in which people are able to communicate with one
another. Spearheading this phenomenon has been the World Wide Web (WWW),
with thousands of new sites being launched daily and consumers being consis-
tently offered numerous outstanding services via this new communications
medium. With this exploding market has come a great need for new technologies
and developers to learn these technologies. Chances are that if you are reading
this paragraph, you are one of these Web developers or are soon to become one.
Regardless of your profession, you’ve picked this book up because you’ve heard of
the great new technology called PHP.

This chapter introduces the PHP language, discusses its history and capabili-
ties, and provides the basic information you need to begin developing PHP-
enabled sites. Several examples are provided throughout, hopefully serving to
excite you about what PHP can offer you and your organization. You will learn
how to install and configure the PHP software on both Linux/UNIX and Windows
machines, and you will learn how to embed PHP in HTML. At the conclusion of
the chapter, you will be ready to begin delving into the many important aspects of
the PHP language. So light the fire, turn on your favorite jazz album, and curl up
on the lazyboy; you are about to learn what will be one of the most exciting addi-
tions to your resume: PHP programming.

An Abbreviated History

PHP set its roots in 1995, when an independent software development contractor
named Rasmus Lerdorf developed a Perl/CGI script that enabled him to know
how many visitors were reading his online resume. His script performed two
duties: logging visitor information and displaying the count of visitors to the Web
page. Because the WWW as we know it today was still so young at that time, tools
such as these were nonexistent, and they prompted emails inquiring about Ler-
dorf’s scripts. Lerdorf thus began giving away his toolset, dubbed Personal Home
Page (PHP), or Hypertext Preprocessor.

The clamor for the PHP toolset prompted Lerdorf to begin developing addi-
tions to PHP, one of which converted data entered in an HTML form into sym-
bolic variables that allowed for their export to other systems. To accomplish this,
he opted to continue development in C code rather than Perl. This addition to the

3

Gilmore_01 12/5/00 10:22 AM Page 3

existing PHP toolset resulted in PHP 2.0, or PHP-FI (Personal Home Page—Form
Interpreter). This 2.0 release was accompanied by a number of enhancements
and improvements from programmers worldwide.

The new PHP release was extremely popular, and a core team of developers
soon formed. They kept the original concept of incorporating code directly along-
side HTML and rewrote the parsing engine, giving birth to PHP 3.0. By the 1997
release of version 3.0, over 50,000 users were using PHP to enhance their Web pages.

Development continued at a hectic pace over the next two years, with hun-
dreds of functions being added and the user count growing in leaps and bounds.
At the onset of 1999, Netcraft (http://www.netcraft.com) reported a conservative
estimate of a user base surpassing 1,000,000, making PHP one of the most popu-
lar scripting languages in the world.

Early 1999 saw the announcement of the upcoming PHP 4.0. Although one of
PHP’s strongest features was its proficiency at executing scripts, the developers
had not intended that large-scale applications were going to be built using PHP.
Thus they set out to build an even-more robust parsing engine, better known as
Zend (http://www.zend.com). Development continued rapidly, culminating in the
May 22, 2000, release of PHP 4.0.

In addition to the Zend processor, Zend technologies, based in Israel, offers
the Zend optimizer, which increases even further the performance benefits of the
Zend parsing engine. Available for download free of charge, the benchmarks have
shown that the optimizer can result in a 40 to 100 percent overall performance
gain. Check out the Zend site for more information.

At the time of this writing, according to Netcraft (http://www.netcraft.com),
PHP is installed on over 3.6 million domains, making it one of the most popular
scripting languages in the world. The future of PHP indeed looks bright, as major
Web sites and personal users alike continue to embrace the product.

PHP is best summarized as an embedded server-side Web-scripting language
that provides developers with the capability to quickly and efficiently build
dynamic Web applications. PHP bears a close resemblance, both syntactically and
grammatically, to the C programming language, although developers haven’t been
shy to integrate features from a multitude of languages, including Perl, Java, and
C++. Several of these valuable borrowed features include regular expression pars-
ing, powerful array-handling capabilities, an object-oriented methodology, and
vast database support.

For writing applications that extend beyond the traditional, static methodol-
ogy of Web page development (that is, HTML), PHP can also serve as a valuable
tool for creating and managing dynamic content, embedded directly beside the

Chapter 1

4

NOTE 1997 also saw the change of the words underlying the PHP abbrevi-
ation from Personal Home Page to Hypertext Preprocessor.

Gilmore_01 12/5/00 10:22 AM Page 4

likes of JavaScript, Stylesheets, WML (Wireless Markup Language) and many other
useful languages. Providing hundreds of predefined functions, PHP is capable of
handling just about anything a developer can dream of. Extensive support is
offered for graphic creation and manipulation, mathematical calculations, ecom-
merce, and burgeoning technologies such as Extensible Markup Language (XML),
open database connectivity (ODBC), and Macromedia Shockwave. This vast range
of capabilities eliminates the need for the tedious and costly integration of several
third-party modules, making PHP the tool of choice for developers worldwide.

One of the main strengths of PHP is the fact that because it can be embedded
directly alongside HTML code, there is no need to write a program that has many
commands just to output the HTML. HTML and PHP can be used interchange-
ably as needed, working alongside one another in unison. With PHP, we can sim-
ply do the following:

<html>

<title><? print "Hello world!"; ?></title>

</html>

And Hello world! will be displayed in the Web page title bar. Interestingly, the
single line print statement is enclosed in what are commonly known as PHP’s
escape characters (<?…?>) is a complete program. No need for lengthy prefacing
code or inclusion of libraries; the only required code is what is needed to get the
job done!

Of course, in order to execute a PHP script, you must first install and config-
ure the PHP software on your server. This process is explained in “Downloading
and Installing PHP/Apache,” later in this chapter. Immediately preceding that
section are a few excerpts from prominent users testifying to the power of PHP,
followed by a detailed synopsis of the language and its history. However, before
diving into the installation process, take a moment to read more about the char-
acteristics of PHP that make it such a powerful language. This is the subject of the
next section, aptly titled “Characteristics of PHP.”

Characteristics of PHP

As you may have realized, the PHP language revolves around the central theme of
practicality. PHP is about providing the programmer with the necessary tools to
get the job done in a quick and efficient fashion. Five important characteristics
make PHP’s practical nature possible:

• Familiarity

• Simplicity

An Introduction to PHP

5

Gilmore_01 12/5/00 10:22 AM Page 5

• Efficiency

• Security

• Flexibility

One final characteristic makes PHP particularly interesting: it’s free!

Familiarity

Programmers from many backgrounds will find themselves already accustomed
to the PHP language. Many of the language’s constructs are borrowed from C and
Perl, and in many cases PHP code is almost indistinguishable from that found in
the typical C or Pascal program. This minimizes the learning curve considerably.

Simplicity

A PHP script can consist of 10,000 lines or one line: whatever you need to get the job
done. There is no need to include libraries, special compilation directives, or any-
thing of the sort. The PHP engine simply begins executing the code after the first
escape sequence (<?) and continues until it passes the closing escape sequence
(?>). If the code is syntactically correct, it will be executed exactly as it is displayed.

Efficiency

Efficiency is an extremely important consideration for working in a multiuser
environment such as the WWW. PHP 4.0 introduced resource allocation mecha-
nisms and more pronounced support for object-oriented programming, in addi-
tion to session management features. Reference counting has also been intro-
duced in the latest version, eliminating unnecessary memory allocation.

Security

PHP provides developers and administrators with a flexible and efficient set of
security safeguards. These safeguards can be divided into two frames of reference:
system level and application level.

System-Level Security Safeguards

PHP furnishes a number of security mechanisms that administrators can manip-
ulate, providing for the maximum amount of freedom and security when PHP is
properly configured. PHP can be run in what is known as safe mode, which can

Chapter 1

6

Gilmore_01 12/5/00 10:22 AM Page 6

limit users’ attempts to exploit the PHP implementation in many important ways.
Limits can also be placed on maximum execution time and memory usage, which
if not controlled can have adverse affects on server performance. Much as with a
cgi-bin folder, administrators can also place restrictions on the locations in which
users can view and execute PHP scripts and use PHP scripts to view guarded
server information, such as the passwd file.

Application-Level Security Safeguards

Several trusted data encryption options are supported in PHP’s predefined func-
tion set. PHP is also compatible with many third-party applications, allowing for
easy-integration with secure ecommerce technologies. Another advantage is that
the PHP source code is not viewable through the browser because the script is
completely parsed before it is sent back to the requesting user. This benefit of
PHP’s server-side architecture prevents the loss of creative scripts to users at least
knowledgeable enough to execute a ‘View Source’.

Security is such an important issue that this book contains an entire chapter
on the subject. Please read Chapter 16, “Security,” for a thorough accounting of
PHP’s security features.

Flexibility

Because PHP is an embedded language, it is extremely flexible towards meeting the
needs of the developer. Although PHP is generally touted as being used in conjunc-
tion solely with HTML, it can also be integrated alongside languages like JavaScript,
WML, XML, and many others. Additionally, as with most other mainstream lan-
guages, wisely planned PHP applications can be easily expanded as needed.

Browser dependency is not an issue because PHP scripts are compiled
entirely on the server side before being sent to the user. In fact, PHP scripts can be
sent to just about any kind of device containing a browser, including cell phones,
personal digital assistant (PDA) devices, pagers, laptops, not to mention the tradi-
tional PC. People who want to develop shell-based applications can also execute
PHP from the command line.

Since PHP contains no server-specific code, users are not limited to a specific
and perhaps unfamiliar Web server. Apache, Microsoft IIs, Netscape Enterprise
Server, Stronghold, and Zeus are all fair game for PHP’s server integration.
Because of the various platforms that these servers operate on, PHP is largely
platform independent, available for such platforms as UNIX, Solaris, FreeBSD,
and Windows 95/98/NT.

Finally, PHP offers access to external components, such as Enterprise Java Beans
and Win32 COM objects. These newly added features put PHP in the big league, truly
enabling developers to scale PHP projects upward and outward as need be.

An Introduction to PHP

7

Gilmore_01 12/5/00 10:22 AM Page 7

Free

The open source development strategy has gained considerable notoriety in the
software industry. The prospect of releasing source code to the masses has
resulted in undeniably positive outcomes for many projects, perhaps most
notably Linux, although the success of the Apache project has certainly been a
major contributor in proving the validity of the open source ideal. The same holds
true for the developmental history of PHP, as users worldwide have been a huge
factor in the advancement of the PHP project.

PHP’s embracing of this open source strategy result in great performance
gains for users, and the code is available free of charge. Additionally, an extremely
receptive user community numbering in the thousands acts as “customer sup-
port,” providing answers to even the most arcane questions in popular online dis-
cussion groups.

The next section, “User Affirmations,” provides testimonies from three noted
industry professionals. Each provides keen insight into why they find PHP such
an appealing technology.

User Affirmations

“We have for a long time had a personal contact to some of the PHP devel-
opers and exchanged a lot of emails with them in the past. When the PHP
developers have had any problems with MySQL related issues we have
always been ready to help them solve them. We have also on some occa-
sions added new features into MySQL just to get the PHP integration better.
The result of this work is that MySQL works extremely well with PHP and
we will ensure that it keeps that way!”

Michael “Monty” Widenius, MySQL Developer
http://www.mysql.com

“FAST used PHP to implement mp3.lycos.com for a number of reasons. The
most important was time to market; PHP really lets you speed up the
development. Another reason was speed, we went from 0 to 1.4 million
page impressions in one day, and PHP coped just fine with this. The third
reason was of course that I knew that if I found bugs in PHP during this
‘“stress test”,’ I could fix them myself since PHP is open source.”

Stig Bakken, FAST Search & Transfer ASA
http://www.fast.no

“I’ve used PHP from the early days when it was PHP/FI 1.x. I loved having
the ability to process forms and customize my pages on the fly with such an
easy-to-use language. As my company’s needs have evolved, so has PHP.

Chapter 1

8

Gilmore_01 12/5/00 10:22 AM Page 8

Today, PHP is extremely feature rich. We rely on it for just about every cus-
tom web site we develop, including 32bit.com and DevShed.com. We even
use it at InfoWest to manage our customer service, account management
and port monitoring.

PHP’s evolution and acceptance is a textbook example of a successful
open source project. Open-mindedness, community contribution, and a
well-managed code-base have helped build PHP into a success few com-
mercial entities have been able to emulate. I look forward to the future of
PHP. I encourage any budding web developer to give PHP a spin. Like me,
you may never want to give it up.”

Randy Cosby
President, nGenuity, Inc.

DevShed (http://www.devshed.com)

An Introductory Example

Consider the example shown in Listing 1-1, which illustrates just how easily PHP
can be integrated alongside HTML:

Listing 1-1: Dynamic PHP page creation
<?

// Set a few variables

$site_title = "PHP Recipes";

$bg_color = "white";

$user_name = "Chef Luigi";

?>

<html>

<head>

<title><? print $site_title; ?></title>

</head>

<body bgcolor="<? print $bg_color; ?>" >

<?

// Display an intro. message with date and user name.

print "

PHP Recipes | ".date("F d, Y")."

Greetings, $user_name!

";

?>

</body>

</html>

Figure 1-1 shows how the script appears when it is executed in the browser.

An Introduction to PHP

9

Gilmore_01 12/5/00 10:22 AM Page 9

Not too shabby, huh? I’m sure many a reader’s mind is already churning with
possibilities. However, before delving further into scripting issues, chances are
you may need to install and configure PHP on your machine. This is the subject of
the next few sections.

Downloading PHP/Apache

Before you proceed, I recommend that you take some time to download, install,
and configure PHP and a Web server on your machine. Although PHP is compati-
ble with a wide variety of Web servers, I’ll assume that you will be using Apache,
partly because it is currently the Web’s most popular Web server and partly
because it is the one most widely used with PHP. Regardless, the general installa-
tion process will not differ widely between Web servers.

You can download the PHP distribution from the official PHP site or from one
of its many worldwide mirror sites. Go to http://www.php.net for the most recently
updated mirror list. From here, you can download PHP in one of two formats:

• WIN32 Binary

• Source code

Chapter 1

10

Figure 1-1. The script is executed in the browser.

Gilmore_01 12/5/00 10:22 AM Page 10

The Win32 binary is for Windows 95/98/NT/2000 users. While it is also possi-
ble to compile the source code on the Windows platform, for the large majority of
users this won’t be necessary. However, if you insist on doing so (incidentally, a
process that is not discussed within this book), you’ll need a recent Visual C++
compiler for doing so. Check out http://www.php.net/version4/win32build.php
for more information on this process. The Win32 binary installation process is
detailed later in this chapter.

For non-Windows users, you’ll need to build the source code. While many
beginners may shudder at this thought, it is actually a rather simple process, as
you’ll soon learn. For those of you interested to know whether or not PHP is
offered in RPM (RedHat Package Manager) distribution format; it is, although
these RPMs are not available via the official PHP site. Check the discussion groups
(some of which are listed at the end of this chapter) for more information regard-
ing distribution locations and instructions. The generalized build process is
detailed later in this chapter.

Proceed to http://www.php.net and download the distribution that best suits
your needs. Download times will vary with your connection type and speed. Addi-
tionally, the documentation is available for download. I strongly recommend
downloading the most recent version.

If you haven’t yet installed the Apache server, you will want to download the
latest stable version of that as well. These packages are at
http://www.apache.org/dist/binaries/, which contains directories for a plethora
of operating systems. Download the one that is specific to your needs. Providing
instructions regarding PHP configuration specifics for every available platform
and Web server is out of the scope of this book. Therefore, I will concentrate on
the Apache server. Regardless of the Web server you intend to use, I strongly rec-
ommend reading through the configuration sections later in this chapter to gain
some insight into the generalized configuration issues that you may encounter.

Installation of new software can sometimes prove to be a daunting process
for newcomers. However, the PHP developers have taken extra steps to make PHP
installation relatively easy. The following sections highlight the steps you should
take to install and configure PHP on both the non-Windows and the Win32
platforms.

An Introduction to PHP

11

TIP PHP 4.0.3 was the current stable version at the time of printing of
this book. Of course, this version number is due to change along with the
continued development of the PHP package. I recommend always down-
loading the most recent stable version of the product.

Gilmore_01 12/5/00 10:22 AM Page 11

Installation and Configuration

At this point, I’ll assume that you have successfully downloaded PHP and Apache.
The next step is deciding how you would like to install the distribution.For non-
Windows machines, there three different ways to do so: CGI binary, static Apache
module, and the dynamic Apache module. As a non-Windows user, chances are
you will not want to build PHP as a CGI binary. Furthermore, there are several
advantages to building PHP as a server module, therefore I'll concentrate solely
on building PHP both as a static and a dynamic module. As it relates to installa-
tion, the main difference between the two is that any subsequent changes to the
PHP static module will require the recompilation of both Apache and PHP, while
changes to the PHP dynamic module only require the subsequent recompilation
of just PHP and not the server.

For Windows machines, PHP can be installed as either a CGI binary or as a
static Apache module. In this case, I'll concentrate upon the CGI binary, since a
Windows-user might be more prone to use a Web server other than Apache, like
Microsoft's Internet Information Server or Microsoft's Personal Web Server. The
CGI version can easily be integrated into these servers. Although I illustrate the
PHP/Apache Windows installation process, this process is very similar to that
which would be used for the above-mentioned Web servers as well.

Chapter 1

12

NOTE In later chapters I’ll introduce the MySQL database server, using this
popular product as the basis for illustrating Web/database integration. In
order to experiment with these examples, you’ll need to install the MySQL
package, available at http://www.mysql.com. Like PHP, MySQL is available
for both non-Windows and Windows platforms. Although I defer to the
MySQL documentation due to its thorough installation instructions, you
may be interested in taking a moment to read through the initial pages of
Chapter 11, “Databases,” for an introduction of the MySQL database server.

NOTE Recall that PHP4 comes with support for a wide variety of Web
servers, including AOL Server, Netscape Enterprise Server, Microsoft IIs,
Zeus, and more. However, I will keep the installation process limited to
that relating to Apache. For detailed instructions regarding how to install
PHP with these other servers, check out the PHP documentation at
http://www.php.net.

Gilmore_01 12/5/00 10:22 AM Page 12

Non-Windows

Regardless of the installation variation you choose, you’ll need to begin by
decompressing the distributions. This is accomplished in two easy steps:

1. Unzip the packages. Once done, you’ll see that the files will be left with
*.tar extensions:

gunzip apache_1.3.9.tar.gz

gunzip php-4.0.0.tar.gz

2. Untar the packages. This will unarchive the distributions:

tar -zxvf apache_1.3.x.tar

tar -zxvf php-4.0.x.tar

The installation procedure will pick up from this point.

Apache Module

Installing PHP as an Apache module is rather simple. I’ll take you through each
step here:

1. Change location to the Apache directory:

cd apache_1.3.x

2. Configure Apache. You can use any path you like. Keep in mind that a
slash does not follow the pathname:

./configure —prefix=[path]

3. Change the location to the PHP directory and configure, build, and install
the distribution. The option with-config-file-path specifies the directory
that will contain PHP’s configuration file. Generally, this path is set to be
/usr/local/lib, but you can set it to be anything you wish:

./configure –with-apache=../apache_1.3.x —with-config-file-path=[config-path]

make

make install

An Introduction to PHP

13

Gilmore_01 12/5/00 10:22 AM Page 13

4. Change back to the Apache directory. Now you will reconfigure, build,
and install Apache. The other-configuration-options option refers to any
special configuration options that you would like to pass along to the
Apache Web server. This is beyond the scope of this book. I suggest
checking out the Apache documentation for a complete explanation of
these options:

./configure –activate-module=src/modules/php4/libphp4.a

—other-configuration-options

make

make install

5. The final step involves modifying Apache’s httpd.conf file. Some of these
modifications relate specifically to Apache, while others are necessary to
ensure that PHP scripts can be recognized and sent to the Web server.
First, locate the line that reads:

ServerName new.host.name

Change this line to read:

ServerName localhost

Next, locate the following two lines:

#AddType application/x-httpd-php .php .php4

#AddType application/x-httpd-php-source .phps

These lines need to be uncommented in order for PHP-enabled files to work
correctly on the server. To uncomment these lines, simply remove the pound
symbol (#) from the beginning of each line. Save the file and move up one direc-
tory. Start the Apache server using the following command:

./bin/apachectl start

Voilà! PHP and Apache are now ready for use. For testing purposes, insert the
following code into a file and save the file as phpinfo.php to the Apache’s docu-
ment root directory. This is the directory called htdocs, located in the Apache
installation directory.

<?

php_info();

?>

Chapter 1

14

Gilmore_01 12/5/00 10:22 AM Page 14

Open this file up in a browser on the server. You should see a lengthy list of
information regarding PHP’s configuration. Congratulations, you’ve successfully
installed PHP as an Apache Module.

Dynamic Apache Module

The Dynamic Module is useful because it allows you to upgrade your PHP distri-
bution without having to recompile the Web server as well. Apache considers it
just another one of its many modules, like ModuleRewrite or ModuleSpelling.
This idea becomes particularly useful when you want to add some kind of sup-
port to PHP later, encryption, for example. All you have to do is reconfigure/com-
pile PHP in accordance with the encryption support, and you can immediately
begin using it in your Web applications. Here is the installation process:

1. Change location to the Apache directory:

cd apache_1.3.x

2. Configure Apache. You can use any path you like. Keep in mind that a
slash does not follow the pathname. The –other-configuration-options
option refers to any special configuration options that you would like to
pass along to the Apache Web server. This is beyond the scope of this
book. I suggest checking out the Apache documentation for a complete
explanation of these options:

./configure —prefix=[path] —enable-module=so —other-configuration-options

3. Build the Apache server. After typing make, you will see a bunch of mes-
sages scroll by. This is normal.

make

4. Install the Apache server. After you type make install, another bunch of
messages will scroll by. Again, this is normal. Once this has finished,
you’ll see a message stating that you have successfully installed the
server.

make install

5. Assuming no errors occurred, you’re ready to modify Apache’s
“httpd.con” file. This file is located in the conf directory in the path that

An Introduction to PHP

15

Gilmore_01 12/5/00 10:22 AM Page 15

you designated in step 4. Open this file in your favorite text editor. Locate
the following line:

ServerName new.host.name

Modify this line to read:

ServerName localhost

6. Change location to the directory in which you downloaded PHP. Then,
configure, make, and install PHP. You will need to specify the path direc-
tory pointing to the apxs file. This file can be found in the bin directory of
the path you designated in step 4.

./configure —with-apxs=[path/to/apxs]

make

make install

7. Reopen Apache’s httpd.conf file for another modification. In order for
incoming requests for PHP-enabled files to be properly parsed, the file
extension must coincide with the one as specified in the Apache server’s
configuration file, httpd.conf. This file contains a number of options,
which can be modified at the administrator’s discretion; a few of these
options relate directly to PHP. Open the httpd.conf file in your favorite
text editor. Towards the end of the file are two lines similar to the fol-
lowing:

#AddType application/x-httpd-php .php .php4

#AddType application/x-httpd-php-source .phps

8. You must uncomment these in order for PHP-enabled files to work cor-
rectly on the server. To uncomment these lines, simply remove the pound
symbol (#) from the beginning of each line.

9. Save the file and move up one directory (to cd). Start the Apache server
using the following command:

./bin/apachectl start

Voilà! PHP and Apache are now ready for use.

Chapter 1

16

Gilmore_01 12/5/00 10:22 AM Page 16

For testing purposes, insert the following code into a file and save the file as
phpinfo.php to the Apache’s document root directory. This is the directory called
htdocs, located in the Apache installation directory.

<?

php_info();

?>

Open this file up in a browser on the server. You should see a lengthy list of
information regarding PHP’s configuration. Congratulations, you’ve successfully
installed the Dynamic Apache Module.

Installation on Windows 95/98/NT

If you have installed an application on the Windows operating system, you have
probably found it to be very easy. Click a few buttons, agree to a few statements,
and the application is installed. And so is the case with the installation of Apache
and PHP on a Windows machine.

1. Double-click the Apache executable to begin the installation. You will be
greeted with an installation wizard. Read attentively and accept the
licensing agreement.

2. The wizard will suggest a default installation directory
(C:\Program Files\Apache Group\Apache). This is fine, but you may want
to shorten it to just C:\Apache\. However, it’s up to you.

3. You will then be prompted for what name you would like to have appear
in the Start menu. Enter whatever you want, or accept the default.

4. Next you will be prompted for the installation type. Just pick Typical.
After you make your choice, the installation process is carried out.

5. Now it is time to modify the “httpd.conf” file, located in the conf direc-
tory, which is located in whatever directory you chose to install the
Apache server in step 2. Open this file using your favorite text editor.
You’ll probably want to make at least three basic modifications:

An Introduction to PHP

17

Gilmore_01 12/5/00 10:22 AM Page 17

Replace yourname@yoursite.com with the correct information.

ServerAdmin yourname@yoursite.com

Uncomment this line and place the correct server name. Just use local-
host if you do not have an actual server name:

ServerName localhost

6. Attempt to start Apache to ensure that everything is working. At this
point you need to make the differentiation as to the type of Windows OS
you are using:

If you’re using Windows NT, choose “Install Apache as Service (NT Only)”
from the Start menu. Then go to the Control Panel, open up the Services
window, choose Apache, and click the “Start” button. Apache will start,
and it will start automatically at every subsequent boot of the machine.

If you’re not using Windows NT, choose “Start Apache” from the Start
menu. A small window will open. This window must be kept open in
order for the server to run.

7. Finally, go to a browser installed on the server and enter
http://localhost/. You should see a default page stating that the installa-
tion has been carried out correctly.

8. Now it’s time to install PHP. Change the directory to wherever you down-
loaded the PHP package. Extract it to the directory of your choice using
an unzipping application.

9. Go to that directory and look for a file entitled “php.ini-dist”. Rename this
file to php.ini and place it in the C:\Windows\ directory.

10. Go back to the PHP directory. Look for two more files, php4ts.dll and
Mscvrt.dll. Place these files in the C:\Windows\System\ directory. You
probably already have the Mscvrt.dll file, and you will be prompted to
overwrite it. Don’t overwrite the file or copy it.

11. Return to the Apache http.conf file, again opening it up in a text editor.
There are a few more modifications that you need to make:

[(H2L)]

18

Gilmore_01 12/5/00 10:22 AM Page 18

Look for this line:

ScriptAlias /cgi-bin/ "C:/Apache/cgi-bin/"

Directly below this line, add the following:

ScriptAlias /php4/ "C:/php4/"

Then search for “AddType”. You will see the following two commented lines:

#AddType application/x-httpd-php3 .phtml

#AddType application/x-httpd-php3-source .phps

Directly below these lines, add the following:

AddType application/x-httpd-php .phtml .php

AddType application/x-httpd-php-source .phps

Keep scrolling down. You will find the following commented lines:

#

Action lets you define media types that will execute a script whenever

a matching file is called. This eliminates the need for repeated URL

pathnames for oft-used CGI file processors.

Format: Action media/type /cgi-script/location

Format: Action handler-name /cgi-script/location

#

Below this, add the following:

Action application/x-httpd-php /php4/php.exe

12. Voilà! PHP and Apache are now ready for use.

For testing purposes, insert the following code into a file and save the file as
“phpinfo.php” to the Apache’s document root directory. This is the directory
called htdocs located in whatever directory you specified in step 4.

<?

php_info();

?>

[(H1L)]

19

Gilmore_01 12/5/00 10:22 AM Page 19

Open this file in a browser on the server. You should see a lengthy list of informa-
tion regarding PHP’s configuration.

PHP Configuration

Although PHP will correctly run given its default configuration setting, you can
make quite a few modifications to fine-tune the installation to your needs. The
php.ini file, copied by default into the /usr/local/lib/ directory during the installa-
tion process, contains all of these configuration settings.

Regardless of the platform and Web server used in conjunction with PHP, the
php.ini file will contain the same default set of parameters, from which several

important characteristics of the PHP installation can be administered. This file
contains all of the characteristics relevant to how your installation will act when
PHP scripts are executed. The PHP engine reads the php.ini file when PHP
starts up.

General Configuration Directives

Reiterating all of the configuration directives is beyond the scope of this book, but
there are several directives worth mentioning, as most the developers may find
them particularly useful. I’ll mention other directives as appropriate in subse-
quent chapters.

Chapter 1

20

CAUTION Although successfully completing the steps outlined above does
make it possible for the Web server/PHP configuration to be used for testing
purposes, it does not imply that your Web server is accessible via the World
Wide Web. Check out the official Apache site (http://www.apache.org) for
information regarding this matter. Furthermore, although the preceding
steps suffice to get the PHP package up and running, you will probably be
interested in modifying PHP’s configuration to best suit your needs. See
“PHP Configuration,” later in this chapter, for details.

NOTE The configuration file is entitled php3.ini in the 3.0 version but has
been changed to php.ini in the 4.0 version.

Gilmore_01 12/5/00 10:22 AM Page 20

short_open_tag [on | off]

The short_open_tag [on | off] configuration directive determines the use of the
short PHP escape tags <?…?>, in addition to the default tags.

asp_tags [on | off]

The asp_tags [on | off] configuration directive determines the use of ASP style tags
in addition to the default tags. ASP style tags are those that enclose PHP code as
follows:

<%

print "This is PHP code.";

%>

precision [integer]

The precision [integer] configuration directive sets the number of significant dig-
its displayed in floating point numbers.

safe_mode [on | off]

Turning on safe mode is a particularly good idea if you have several users on your
system. Essentially, turning on safe mode eliminates the possibility that a user
can use a PHP script to gain access to another file on the system, for example, the
passwd file on a Linux machine. Safe_mode works solely on the CGI version of
PHP. Check out Chapter 16 for more details regarding this matter.

max_execution_time [integer]

The max_execution_time [integer] configuration directive determines the maxi-
mum number of seconds that a given PHP script may execute. This prevents run-
away scripts from eating up valuable system resources.

error_reporting [1–8]

The error_reporting [1-8] configuration directive gauges to what degree errors will
be reported, if any. The higher the bit value, the more sensitive PHP will be to
reporting errors:

An Introduction to PHP

21

Gilmore_01 12/5/00 10:22 AM Page 21

BIT VALUE REPORTING SENSITIVITY

1 normal errors

2 normal warnings

4 parser errors

8 notices

display_errors [on | off]

The display_errors [on | off] configuration directive display the errors in the
browser.

log_errors

The log_errors configuration directive determines whether or not errors are
logged to a file. If log_errors is turned on, the directive error_log designates which
file the errors are logged to.

error_log [filename]

If log_errors is turned on, error_log designates the filename to which all errors
should be logged.

magic_quotes_gpc

When magic_quotes_gpc is activated, all special characters contained in user or
database data will automatically be escaped with the necessary backslash. By the
way, “gpc” stands for “get/post/cookie”.

Personally, I find it more efficient to keep magic_quotes_gpc turned off and to
escape the special characters explicitly. Regardless of the way you ultimately
decide to do it, there can be no compromise or your data may be corrupted. If
magic_quotes_gpc is “on”, then never physically escape special characters with a
backslash; otherwise, make it a habit to always do so.

track_vars

Chapter 1

22

Gilmore_01 12/5/00 10:22 AM Page 22

The track_vars configuration directive enables the recording of several important
session variable arrays, including $HTTP_GET_VARS[], $HTTP_POST_VARS[],
$HTTP_POST_FILES, $HTTP_COOKIE_VARS[], $HTTP_ENV_VARS[], and
$HTTP_SERVER_VARS[]. These arrays are discussed in further detail in Chapter
13, “Cookies and Session Tracking.”

It is important to note that there are many more configuration directives than
the ones listed here, although those listed are likely to be the ones that most users
will find useful. Many of these directives will be addressed in their respective later
chapters.

Basic PHP Constructs

Now I’ll introduce several preliminary concepts related to PHP before delving into
the core topics of the language that make up the rest of this book.

Escaping to PHP

The PHP parsing engine needs a way to differentiate PHP code from other ele-
ments in the page. The mechanism for doing so is known as ‘escaping to PHP.’
There are four ways to do this:

• Default tags

• Short tags

• Script tags

• ASP-style tags

Default Tags

The default tags are perhaps those most commonly used by PHP programmers,
due to clarity and convenience of use:

<?php print "Welcome to the world of PHP!"; ?>

These tags may also be the most practical ones because the initial escape
characters are followed by php, which explicitly makes reference to the type of
code that follows. This can be useful because you may be simultaneously using

An Introduction to PHP

23

Gilmore_01 12/5/00 10:22 AM Page 23

several technologies in the same page, such as JavaScript, server-side includes,
and PHP. Any ensuing PHP code will then follow the initial escape sequence, pre-
ceded by the closing escape sequence, "?>".

Short Tags

The short tag style is the shortest available for escaping to PHP code:

<? print "Welcome to the world of PHP!"; ?>

Short tags must be enabled in order for them to work. There are two ways to
do this:

• Include the —enable-short-tags option when compiling PHP.

• Enable the short_open_tag configuration directive found within the php.ini
file.

Script Tags

Several text editors will mistakenly interpret PHP code as HTML (that is, view-
able) code, interfering with the Web page development process. To eliminate this
problem, use the following escape tags:

<script language="php">

print "Welcome to the world of PHP!";

</script>

ASP-Style Tags

Chapter 1

24

Gilmore_01 12/5/00 10:22 AM Page 24

A fourth and final way to embed PHP code is through the use of ASP (Active
Server Page)-style tags. This way is much like the short tag way just described,
except that a percentage sign (%) is used instead of a question mark.

<% print "Welcome to the world of PHP!"; %>

A variation of the ASP-style tag that can result in a lesser degree of code clut-
ter is available. This variation eliminates the need to include a ‘print’ statement in
the enclosed PHP code. The equals sign (=) immediately following the opening
ASP tag signals the PHP parser to output the value of the variable:

<%= $variable %>

Making use of this convenient tag style, we could execute the following:

<%

// set variable $recipe to something…

$recipe = "Lasagna";

%>

Luigi’s favorite recipe is <%=$recipe;%>

There are actually two separate PHP scripts in this listing. The first assigns the
value “Lasagna” to the variable $recipe. Later on, when it is necessary to display
the value of the variable $recipe, you can use the ASP-style variation for this sole
purpose. Incidentally, you could also use short tags (<?...?>) in much the same
way.

Embedding HTML in PHP Code

Perhaps the most powerful characteristic of PHP is its ability to both output and
be written directly alongside other languages, HTML and JavaScript, for example.
Listing 1-2 illustrates this concept.

Listing 1-2: Display of HTML using PHP code
<html>

<head>

<title>Basic PHP/HTML integration</title>

</head>

<body>

<?

An Introduction to PHP

25

Gilmore_01 12/5/00 10:22 AM Page 25

// Notice how HTML tags are included in the print statement.

print "<h3>PHP/HTML integration is cool.</h3>";

?>

</body>

</html>

Listing 1-2 illustrates how PHP can incorporate HTML code directly in print
statements. Notice how level-three header (<h3>…</h3>) tags can be placed right
inside the PHP code. These tags will appear in the final document as if they were
regular HTML output.

Listing 1-3 illustrates how PHP can dynamically insert information into a Web
page. The current date will be inserted into the title, as shown in Figure 1-2.

Listing 1-3: Dynamic date insertion
<title>PHP Recipes | <? print (date("F d, Y")); ?></title>

The simple PHP function date() can format the current date in several differ-
ent ways. This formatted date value can then be output into the title.

PHP is also capable of modifying the format of the HTML itself through the
designation and subsequent insertion of tag characteristics in the file. Listing 1-4
shows how this is possible, assigning a font characteristic (h3) to a variable
($big_font) and later inserting it as needed in the display text.

Listing 1-4: Dynamic HTML tags
<html>

<head>

<title>PHP Recipes | <? print (date("F d, Y")); ?></title>

Chapter 1

26

Figure 1-2. A simple PHP function, date(), formats the date for display in the
browser title bar.

Gilmore_01 12/5/00 10:22 AM Page 26

</head>

<?

$big_font = "h3";

?>

<body>

<? print "<$big_font>PHP Recipes</$big_font>"; ?>

</body>

</html>

Listing 1-4 is a variation of Listing 1-3, this time first assigning level-three
header (<h3>…</h3>) tags to a variable and then later using this variable in a print
statement. These tags will appear in the final document as if they were regular
HTML output.

Multiple-PHP Script Embedding

To allow for flexibility when building dynamic Web applications, you can embed
several separate PHP scripts throughout a page. Listing 1-5 illustrates this.

Listing 1-5: Embedding multiple PHP scripts in a single document
<html>

<head>

<title>

<?

print "Another PHP-enabled page";

$variable = "Hello World!";

?>

</title></head>

<body>

<? print $variable; ?>

</body>

</html>

Listing 1-5 begins as a typical (albeit simple) HTML page would. The flexibil-
ity offered by this feature is that variables can be assigned in one code section and
still used later on in another code section on the same page.

An Introduction to PHP

27

Gilmore_01 12/5/00 10:22 AM Page 27

Commenting PHP Code

You should sufficiently comment the code even for relatively short and uncompli-
cated scripts. There are two commenting formats in PHP:

• Single-line comments are generally used for short explanations or notes rel-
evant to the local code.

• Multiline comments are generally used to provide pseudocode algorithms
and more detailed explanations when necessary.

Both methods ultimately result in the same outcome and have no bearing on
the overall performance of the script. Which to use is left up to you.

Single-Line Comments

Two commenting styles are geared toward single-line comments. Both work
exactly the same way, but they employ different escape characters. One style uses
a double backslash (//) at the beginning of a comment, and the other style uses a
pound symbol (#) at the beginning of a comment. Here are examples of each
style:

<?

// set the color of the roses.

$rose_color = "red";

set the color of the violets.

$violet_color = "blue";

print "Roses are $rose_color, violets are $violet_color";

?>

Of course, it is possible to use single-line comments to build multiline com-
ments using either style, as seen in the following listing:

Chapter 1

28

Gilmore_01 12/5/00 10:22 AM Page 28

<?

// file: example.php

// author: WJ Gilmore

// date: August 24, 2000

print "An example with comments";

?>

Multiline Comments

PHP provides a mechanism for detailed comments that may take up more than
one line. This type of comment is enclosed in C-style comments, denoted with an
opening ‘/*’ and ‘*/’.

<?

/*

script: multi_comment_example.php

purpose: Multiline comment example

author: wj gilmore

date: June 14, 2000

*/

print "A multiline comment can be found at the top of this script!";

?>

As you can see, multiline comments are useful when you need to provide a
relatively lengthy summary of a script or a part of one.

What’s Next?

This chapter brought you up to speed regarding several key aspects of PHP,
namely:

• PHP’s history and features

• Installation and configuration

• “Escaping” to PHP

An Introduction to PHP

29

Gilmore_01 12/5/00 10:22 AM Page 29

• Commenting PHP code

These topics serve as the introduction to subsequent chapters, where you will
learn more about the developmental issues regarding the PHP language. At the
conclusion of the next chapter, you will know enough about PHP to begin writing
your own programs. You will apply this knowledge by developing an events calen-
dar that can be easily inserted into an existing Web page. This project will serve as
the precursor for further development of the PHP Recipes Web application.

Gilmore_01 12/5/00 10:22 AM Page 30

	coverdocument.pdf
	Apress(
	Chapter One: “An Introduction to PHP”

	A Programmer’s Introduction to PHP 4.0

	coverdocument.pdf
	Apress(
	Chapter One: “An Introduction to PHP”

	A Programmer’s Introduction to PHP 4.0

